Развернутая и свернутая форма числа. Что такое развернутая форма записи числа. Арифметические операции в позиционных системах счисления

Основанием позиционной системы счисления называется целое число q, которое возводится в степень.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых определяет количественный эквивалент (вес) символа в зависимости от его места в коде числа.

Базис десятичной системы счисления: …10 n , 10 n –1 ,…, 10 1 , 10 0 , 10 –1 , …, 10 – m ,…

Базис произвольной позиционной системы счисления: …q n , q n –1 , …, q 1 , q 0 , q –1 , …, q m , …

Основание в любой системе изображается как 10, но имеет разное количественное значение. Оно показывает, во сколько раз изменяется количественное значение цифры при перемещении ее на соседнюю позицию. Возможно множество позиционных систем, так как за основание системы счисления можно принять любое число, не меньшее 2.

Наименование системы счисления соответствует ее основанию (десятичная, двоичная, пятеричная и т. д.).

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числа q, иначе говоря, q единиц какого-либо разряда образуют единицу следующего разряда.

Для записи чисел в q -ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, ..., q – 1.

Следовательно, основание позиционной системы счисления равно количеству символов (знаков) в ее алфавите. Запись числа q в q -ичной системе счисления имеет вид 10.

Пример 1. Восьмеричная система счисления.

Основание: q = 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6 и 7.

Числа: например, 45023,152 8 ; 751,001 8 .

Пример 2. Пятеричная система счисления.

Основание: q = 5.

Алфавит: 0, 1, 2, 3 и 4.

Числа: например, 20304 5 ; 324,03 5 .

Пример 3. Шестнадцатеричная система счисления.

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0-9. Для записи остальных символов алфавита (10, 11, 12, 13, 14 и 15) обычно используются первые пять букв латинского алфавита.

Числа: например, В5С3,1А2 16 ; 355,0FА01 8 .

В позиционной системе счисления любое вещественное число может быть представлено в следующем виде:

A q = ±(a n –1 ×q n –1 + a n –2 ×q n –2 +…+ a 0 ×q 0 + a –1 ×q –1 + a –2 ×q –2 +…+ a m ×q –m ), (1) или ±.

Здесь А - само число; q - основание системы счисления;
а i - цифры, принадлежащие алфавиту данной системы счисления; п - количество целых разрядов числа; т - количество дробных разрядов числа.

Разложение числа по формуле (1) называется развернутой формой записи . Иначе такую форму записи называют многочленной или степенной.

Пример 1. Десятичное число А 10 = 5867,91 по формуле (1) представляется следующим образом:


A 10 = 5×10 3 + 8 × 10 2 + 6 × 10 1 + 7 × 10 0 + 9 × 10 –1 + 1 × 10 –2 .

Пример 2. Формула (1) для восьмеричной системы счисления имеет вид:

A 8 = ±(a n –1 × 8 n –1 + a n –2 × 8 n –2 +…+ a 0 × 8 0 +a –1 ×8 –1 + a –2 ×8 –2 +…+ a –m ×8 –m ),

где а i - цифры 0–7.

Восьмеричное число A 8 = 7064,3 в виде (1) запишется так:

A 8 = 7 × 8 3 + 0 × 8 2 + 6 × 8 1 + 4 × 8 0 + 3 × 8 –1 .

Пример 3. Пятеричное число А 5 = 2430,21 по формуле (1) запишется так:

А 5 = 2 × 5 3 + 4 × 5 2 + 3 × 5" + 0 × 5° + 2 × 5 –1 + 1 × 5 –2 .

Вычислив это выражение, можно получить десятичный эквивалент указанного пятеричного числа: 365,44 10 .

Пример 4. В шестнадцатеричной системе счисления запись 3AF 16 означает:

3AF 16 = 3 × 16 2 + 10 × 16 1 + 15 × 16 0 = 768 + 160 + 15 = 943 10 .

Основанием позиционной системы счисления называется целое число q, которое возводится в степень.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых определяет количественный эквивалент (вес) символа в зависимости от его места в коде числа.

Базис десятичной системы счисления: …10 n , 10 n –1 ,…, 10 1 , 10 0 , 10 –1 , …, 10 – m ,…

Базис произвольной позиционной системы счисления: …q n , q n –1 , …, q 1 , q 0 , q –1 , …, q m , …

Основание в любой системе изображается как 10, но имеет разное количественное значение. Оно показывает, во сколько раз изменяется количественное значение цифры при перемещении ее на соседнюю позицию. Возможно множество позиционных систем, так как за основание системы счисления можно принять любое число, не меньшее 2.

Наименование системы счисления соответствует ее основанию (десятичная, двоичная, пятеричная и т. д.).

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числа q, иначе говоря, q единиц какого-либо разряда образуют единицу следующего разряда.

Для записи чисел в q -ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, ..., q – 1.

Следовательно, основание позиционной системы счисления равно количеству символов (знаков) в ее алфавите. Запись числа q в q -ичной системе счисления имеет вид 10.

Пример 1. Восьмеричная система счисления.

Основание: q = 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6 и 7.

Числа: например, 45023,152 8 ; 751,001 8 .

Пример 2. Пятеричная система счисления.

Основание: q = 5.

Алфавит: 0, 1, 2, 3 и 4.

Числа: например, 20304 5 ; 324,03 5 .

Пример 3. Шестнадцатеричная система счисления.

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0-9. Для записи остальных символов алфавита (10, 11, 12, 13, 14 и 15) обычно используются первые пять букв латинского алфавита.

Числа: например, В5С3,1А2 16 ; 355,0FА01 8 .

В позиционной системе счисления любое вещественное число может быть представлено в следующем виде:

A q = ±(a n –1 ×q n –1 + a n –2 ×q n –2 +…+ a 0 ×q 0 + a –1 ×q –1 + a –2 ×q –2 +…+ a m ×q –m ), (1) или ±.

Здесь А - само число; q - основание системы счисления;
а i - цифры, принадлежащие алфавиту данной системы счисления; п - количество целых разрядов числа; т - количество дробных разрядов числа.

Разложение числа по формуле (1) называется развернутой формой записи . Иначе такую форму записи называют многочленной или степенной.

Пример 1. Десятичное число А 10 = 5867,91 по формуле (1) представляется следующим образом:



A 10 = 5×10 3 + 8 × 10 2 + 6 × 10 1 + 7 × 10 0 + 9 × 10 –1 + 1 × 10 –2 .

Пример 2. Формула (1) для восьмеричной системы счисления имеет вид:

A 8 = ±(a n –1 × 8 n –1 + a n –2 × 8 n –2 +…+ a 0 × 8 0 +a –1 ×8 –1 + a –2 ×8 –2 +…+ a –m ×8 –m ),

где а i - цифры 0–7.

Восьмеричное число A 8 = 7064,3 в виде (1) запишется так:

A 8 = 7 × 8 3 + 0 × 8 2 + 6 × 8 1 + 4 × 8 0 + 3 × 8 –1 .

Пример 3. Пятеричное число А 5 = 2430,21 по формуле (1) запишется так:

А 5 = 2 × 5 3 + 4 × 5 2 + 3 × 5" + 0 × 5° + 2 × 5 –1 + 1 × 5 –2 .

Вычислив это выражение, можно получить десятичный эквивалент указанного пятеричного числа: 365,44 10 .

Пример 4. В шестнадцатеричной системе счисления запись 3AF 16 означает:

3AF 16 = 3 × 16 2 + 10 × 16 1 + 15 × 16 0 = 768 + 160 + 15 = 943 10 .

| Планирование уроков и материалы к урокам | 8 классы | Планирование уроков на учебный год (по учебнику Н.Д. Угриновича) | Развернутая и свернутая формы записи чисел. Перевод из произвольной в десятичную систему счисления

Урок 19
Развернутая и свернутая формы записи чисел. Перевод из произвольной в десятичную систему счисления

§ 4.1. Кодирование числовой информации

4.1.2. Арифметические операции в позиционных системах счисления

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

0 + 0 = 0,
0 + 1 = 1,
1 + 0 = 1,
1 + 1 = 10.

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение цифры в нем становится равным или большим основания системы счисления. Для двоичной системы счисления это значение равно двум.

Сложение многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 110 2 и 11 2:

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим:

Теперь переведем результат двоичного сложения в десятичное число:

Сравним результаты - сложение выполнено правильно.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел.

При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

Вычитание многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел 110 2 и 11 2:

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

Умножение многоразрядных двоичных чисел производится в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя. В качестве примера произведем умножение двоичных чисел 110 2 и 11 2:

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110 2 на 11 2:

Для проведения арифметических операций над числами, выраженными в различных системах счисления, необходимо предварительно перевести их в одну и ту же систему.

Задания для самостоятельного выполнения

4.6. Задание с развернутым ответом. Выполните сложение, вычитание, умножение и деление двоичных чисел 1010 2 и 10 2

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основанием q : X = (a n a n-1 …a 1 a 0) q .Нужно найти значащие цифры числа: .Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0есть остаток от деления числа X на число q . Выражение в скобках - целое частное от этого деления. Обозначим его за X 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деления X 1 на q . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифра an в этой цепочке делений будет последним частным, меньшим q .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;



3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основанием q : X = (0, a –1 a –2 … a –m+1 a –m) q .Нужно найти значащие цифры числа: a –1 , a –2 , …, a –m .Представим число в развернутой форме и умножим его на q :

Отсюда видно, что a –1есть целая часть произведения X на число q . Обозначим за X 1дробную часть произведения и умножим ее на q :

Следовательно, a –2 есть целая часть произведения X 1 на число q . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило: для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Тема “Системы счисления” имеет прямое отношение к математической теории чисел. Однако в школьном курсе математики она, как правило, не изучается. Необходимость изучения этой темы в курсе информатики связана с тем фактом, что числа в памяти компьютера представлены в двоичной системе счисления, а для внешнего представления содержимого памяти, адресов памяти используют шестнадцатеричную или восьмеричную системы. Это одна из традиционных тем курса информатики или программирования. Являясь смежной с математикой, данная тема вносит вклад также и в фундаментальное математическое образование школьников.

Для курса информатики основной интерес представляет знакомство с двоичной системой счисления. Применение двоичной системы счисления в ЭВМ может рассматриваться в двух аспектах: 1) двоичная нумерация, 2) двоичная арифметика, т.е. выполнение арифметических вычислений над двоичными числами.

Двоичная нумерация

С двоичной нумерацией ученики встречаются в теме “Представление текста в компьютерной памяти”. Рассказывая о таблице кодировки, учитель должен сообщить ученикам, что внутренний двоичный код символа - это его порядковый номер в двоичной системе счисления. Например, номер буквы S в таблице ASCII равен 83. Восьмиразрядный двоичный код буквы S равен значению этого числа в двоичной системе счисления: 01010011.

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению.
В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтому перевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.